$2\cos x - \cos 3x - \cos 5x = $
$16{\cos ^3}x{\sin ^2}x$
$16{\sin ^3}x{\cos ^2}x$
$4{\cos ^3}x{\sin ^2}x$
$4{\sin ^3}x{\cos ^2}x$
$\frac{{\sqrt 2 - \sin \alpha - \cos \alpha }}{{\sin \alpha - \cos \alpha }} = $
If $90^\circ < A < 180^\circ $ and $\sin A = \frac{4}{5},$ then $\tan \frac{A}{2}$ is equal to
If $k = \sin \frac{\pi }{{18}}\,.\,\sin \frac{{5\pi }}{{18}}\,.\,\sin \frac{{7\pi }}{{18}},$ then the numerical value of $k$ is
If $\cos \theta = \frac{1}{2}\left( {a + \frac{1}{a}} \right),$then the value of $\cos 3\theta $is
If $\alpha + \beta + \gamma = 2\pi ,$ then