3.Trigonometrical Ratios, Functions and Identities
normal

If $\theta = 3\, \alpha$ and $sin\, \theta =$ $\frac{a}{{\sqrt {{a^2}\,\, + \,\,{b^2}} }}$. The value of the expression , $a \,cosec\, \alpha - b \,sec\, \alpha$ is

A

$\frac{1}{{\sqrt {{a^2}\,\, + \,\,{b^2}} }}$

B

$2 \sqrt {{a^2}\,\, + \,\,{b^2}}$

C

$a + b$

D

none

Solution

$a \,cosec\alpha – bsec\alpha $ $=$  $\frac{a}{{\sin \alpha }}\,\, – \,\,\frac{b}{{\cos \alpha }}$

$\frac{{\sqrt {{a^2} + {b^2}} }}{{\sin \alpha \,\,\cos \alpha }}\,\,\,\left[ {\frac{a}{{\sqrt {{a^2} + {b^2}} }}\,\,\cos \alpha \, – \,\frac{b}{{\sqrt {{a^2} + {b^2}} }}\,\sin \alpha } \right]$

Now $sin3\alpha =$ $\frac{a}{{\sqrt {{a^2} + {b^2}} }}$ gives 

$ \Rightarrow \,\,\sqrt {{a^2} + {b^2}} \,\,\left[ {\frac{{\sin 3\alpha \,\cos \alpha \,\, – \,\,\cos 3\alpha \,\,\sin \alpha }}{{\sin \alpha \,\,\cos \alpha }}} \right] = 2\sqrt {{a^2}\, + \,{b^2}} $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.