3.Trigonometrical Ratios, Functions and Identities
normal

Value of ${\sin ^2}\frac{\pi }{8} + {\sin ^2}\frac{{3\pi }}{8} + {\sin ^2}\frac{{5\pi }}{8} + {\sin ^2}\frac{{7\pi }}{8}$ is

A

$1$

B

$2$

C

$1\frac{1}{8}$

D

$2\frac{1}{8}$

Solution

$\sin \frac{7 \pi}{8}=\sin \left(\pi-\frac{\pi}{8}\right)=\sin \frac{\pi}{8}$

$\sin \frac{5 \pi}{8}=\sin \left(\pi-\frac{3 \pi}{8}\right)=\sin \frac{3 \pi}{8}$

$\therefore $ $\text { The given value } =2\left[\sin ^{2} \frac{\pi}{8}+\sin ^{2} \frac{3 \pi}{8}\right] $

$=2\left[\sin ^{2} \frac{\pi}{8}+\cos ^{2} \frac{\pi}{8}\right] $

$\left[\because \sin \frac{3 \pi}{8}\right.\left.=\sin \left(\frac{\pi}{2}-\frac{\pi}{8}\right)=\cos \frac{\pi}{8}\right] $

$=2(1)=2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.