$\tan \alpha + 2\tan 2\alpha + 4\tan 4\alpha + 8\cot \,8\alpha = $
$\tan \alpha $
$\tan 2\alpha $
$\cot \,\alpha $
$\cot \,2\alpha $
The value of $\frac{{3 + \cot \,7\,{6^ \circ }\,\cot \,{{16}^ \circ }}}{{\cot \,{{76}^ \circ } + \cot \,{{16}^ \circ }}}$ is :
Prove that $\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$
Prove that $\tan 4 x=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}$
$\frac{{\sin {{81}^o} + \cos {{81}^o}}}{{\sin {{81}^o} - \cos {{81}^o}}}$ is equal to
If $2\tan A = 3\tan B,$ then $\frac{{\sin 2B}}{{5 - \cos 2B}}$ is equal to