If $\alpha$, $\beta$,$\gamma$ are positive number such that $\alpha + \beta = \pi$ and $\beta + \gamma = \alpha$, then $tan\ \alpha$ is equal to - (where $\gamma \ne n\pi ,n \in I$ )
$ - 2\sqrt {\frac{{\tan \beta + \tan \gamma }}{{\tan \gamma }}}$
$\sqrt {\frac{{2\tan \beta + \tan \gamma }}{{\tan \gamma }}}$
$ - \sqrt {\frac{{2\tan \beta + \tan \gamma }}{{\tan \gamma }}}$
$\sqrt {\frac{{\tan \beta + \tan \gamma }}{{\tan \gamma }}}$
The value of $sin\,10^o$ $sin\,30^o$ $sin\,50^o$ $sin\,70^o$ is
If $\tan \frac{\theta }{2} = t,$then $\frac{{1 - {t^2}}}{{1 + {t^2}}}$is equal to
$2\cos x - \cos 3x - \cos 5x = $
$\frac{1}{{\tan 3A - \tan A}} - \frac{1}{{\cot 3A - \cot A}} = $
The value of $\tan 81^{\circ}-\tan 63^{\circ}-\tan 27^{\circ}+\tan 9^{\circ}$ is