3.Trigonometrical Ratios, Functions and Identities
easy

If $90^\circ < A < 180^\circ $ and $\sin A = \frac{4}{5},$ then $\tan \frac{A}{2}$ is equal to

A

$1/2$

B

$3/5$

C

$3/2$

D

$2$

Solution

(d) $\sin \,A = \frac{4}{5}$

==>$\tan A = – \frac{4}{3}$, $({90^o} < A < {180^o})$

$\tan A = \frac{{2\tan \frac{A}{2}}}{{1 – {{\tan }^2}\frac{A}{2}}}$, (Let $\tan \frac{A}{2} = P$)

==> $ – \frac{4}{3} = \frac{{2P}}{{1 – {P^2}}}$ 

==> $4{P^2} – 6P – 4 = 0$

==> $P = \frac{{ – 1}}{2}{\rm{ (impossible),}}\,$

hence $\tan \frac{A}{2} = 2$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.