$\sim (p \Leftrightarrow q)$ is
$\sim p\; \wedge \sim q$
$\sim p\; \vee \sim q$
$(p\; \wedge \sim q) \vee (\sim p\; \wedge q)$
None of these
The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to
Let the operations $*, \odot \in\{\wedge, \vee\}$. If $( p * q ) \odot( p \odot \sim q )$ is a tautology, then the ordered pair $(*, \odot)$ is.
The negative of $q\; \vee \sim (p \wedge r)$ is
Consider the following two propositions:
$P_1: \sim( p \rightarrow \sim q )$
$P_2:( p \wedge \sim q ) \wedge((\sim p ) \vee q )$
If the proposition $p \rightarrow((\sim p ) \vee q )$ is evaluated as $FALSE$, then
Which of the following Venn diagram corresponds to the statement “All mothers are women” ($M$ is the set of all mothers, $W$ is the set of all women)