If $(p\; \wedge \sim r) \Rightarrow (q \vee r)$ is false and $q$ and $r$ are both false, then $p$ is
true
false
May be true or false
Data insufficient
The proposition $p \Rightarrow \;\sim (p\; \wedge \sim \,q)$ is
The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to
Which Venn diagram represent the truth of the statement“Some teenagers are not dreamers”
If the truth value of the Boolean expression $((\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r}) \wedge(\sim \mathrm{r})) \rightarrow(\mathrm{p} \wedge \mathrm{q}) \quad$ is false then the truth values of the statements $\mathrm{p}, \mathrm{q}, \mathrm{r}$ respectively can be:
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.