Statement $-1$ : $ \sim \left( {p \leftrightarrow \, \sim q} \right)$ is equivalent to $p \leftrightarrow q$

Statement $-2$ : $ \sim \left( {p \leftrightarrow \, \sim q} \right)$ is a tautology.

  • A

    Statement $-1$ is True, Statement $-2$ is True;
    Statement $-2$ is a correct explanation for Statement $-1$ .

  • B

    Statement $-1$ is True, Statement $-2$ is True;
    Statement $-2$ is $NOT$ a correct explanation for Statement $-1$ .

  • C

    Statement $-1$ is True, Statement $-2$ is False.

  • D

    Statement $-1$ is False, Statement $-2$ is True.

Similar Questions

The negation of the statement $''96$ is divisible by $2$ and $3''$ is

The Boolean Expression $\left( {p\;\wedge \sim q} \right)\;\;\vee \;q\;\;\vee \left( { \sim p\wedge q} \right)$ is equivalent to:

  • [JEE MAIN 2016]

The logically equivalent proposition of $p \Leftrightarrow q$ is

The statement $(p \wedge(\sim q) \vee((\sim p) \wedge q) \vee((\sim p) \wedge(\sim q))$ is equivalent to

  • [JEE MAIN 2023]

For the statements $p$ and $q$, consider the following compound statements :

$(a)$ $(\sim q \wedge( p \rightarrow q )) \rightarrow \sim p$

$(b)$ $((p \vee q) \wedge \sim p) \rightarrow q$

Then which of the following statements is correct?

  • [JEE MAIN 2021]