- Home
- Standard 11
- Physics
1.Units, Dimensions and Measurement
medium
${\mu _0}$ and ${\varepsilon _0}$ denote the permeability and permittivity of free space, the dimensions of ${\mu _0}{\varepsilon _0}$ are
A$L{T^{ - 1}}$
B${L^{ - 2}}{T^2}$
C${M^{ - 1}}{L^{ - 3}}{Q^2}{T^2}$
D${M^{ - 1}}{L^{ - 3}}{I^2}{T^2}$
Solution
(b) $C = \frac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}$
$⇒$ ${\mu _0}{\varepsilon _0} = \left( {\frac{1}{{{C^2}}}} \right)$ (where $C =$ velocity of light)
$[{\mu _0}{\varepsilon _0}] = {L^{ – 2}}{T^2}$
$⇒$ ${\mu _0}{\varepsilon _0} = \left( {\frac{1}{{{C^2}}}} \right)$ (where $C =$ velocity of light)
$[{\mu _0}{\varepsilon _0}] = {L^{ – 2}}{T^2}$
Standard 11
Physics