- Home
- Standard 11
- Physics
1.Units, Dimensions and Measurement
medium
The dimensions of $emf$ in $MKS$ is
A$M{L^{ - 1}}{T^{ - 2}}{Q^{ - 2}}$
B$M{L^2}{T^{ - 2}}{Q^{ - 2}}$
C$ML{T^{ - 2}}{Q^{ - 1}}$
D$M{L^2}{T^{ - 2}}{Q^{ - 1}}$
Solution
(d) $e = L\frac{{di}}{{dt}} \Rightarrow [e] = [M{L^2}{T^{ – 2}}{A^{ – 2}}]\,\left[ {\frac{A}{T}} \right]$
$[e] = \left[ {\frac{{M{L^2}{T^{ – 2}}}}{{AT}}} \right] = [M{L^2}{T^{ – 2}}{Q^{ – 1}}]$
$[e] = \left[ {\frac{{M{L^2}{T^{ – 2}}}}{{AT}}} \right] = [M{L^2}{T^{ – 2}}{Q^{ – 1}}]$
Standard 11
Physics
Similar Questions
Match List $I$ with List $II$
List $I$ | List $II$ |
$A$ Spring constant | $I$ $(T ^{-1})$ |
$B$ Angular speed | $II$ $(MT ^{-2})$ |
$C$ Angular momentum | $III$ $(ML ^2)$ |
$D$ Moment of Inertia | $IV$ $(ML ^2 T ^{-1})$ |
Match List $I$ with List $II$
LIST$-I$ | LIST$-II$ |
$(A)$ Torque | $(I)$ $ML ^{-2} T ^{-2}$ |
$(B)$ Stress | $(II)$ $ML ^2 T ^{-2}$ |
$(C)$ Pressure of gradient | $(III)$ $ML ^{-1} T ^{-1}$ |
$(D)$ Coefficient of viscosity | $(IV)$ $ML ^{-1} T ^{-2}$ |