The dimensions of $emf$ in $MKS$ is
$M{L^{ - 1}}{T^{ - 2}}{Q^{ - 2}}$
$M{L^2}{T^{ - 2}}{Q^{ - 2}}$
$ML{T^{ - 2}}{Q^{ - 1}}$
$M{L^2}{T^{ - 2}}{Q^{ - 1}}$
A force is represented by $\mathrm{F}=a \mathrm{x}^2+\mathrm{bt}^{1 / 2}$. Where $\mathrm{x}=$ distance and $\mathrm{t}=$ time. The dimensions of $\mathrm{b}^2 / \mathrm{a}$ are :
Match List$-I$ with List$-II.$
List$-I$ | List$-II$ |
$(a)$ Torque | $(i)$ ${MLT}^{-1}$ |
$(b)$ Impulse | $(ii)$ ${MT}^{-2}$ |
$(c)$ Tension | $(iii)$ ${ML}^{2} {T}^{-2}$ |
$(d)$ Surface Tension | $(iv)$ ${MI} {T}^{-2}$ |
Choose the most appropriate answer from the option given below :
In a particular system of units, a physical quantity can be expressed in terms of the electric charge $c$, electron mass $m_c$, Planck's constant $h$, and Coulomb's constant $k=\frac{1}{4 \pi \epsilon_0}$, where $\epsilon_0$ is the permittivity of vacuum. In terms of these physical constants, the dimension of the magnetic field is $[B]=[c]^\alpha\left[m_c\right]^\beta[h]^\gamma[k]^\delta$. The value of $\alpha+\beta+\gamma+\delta$ is. . . . .
The frequency of vibration $f$ of a mass $m$ suspended from a spring of spring constant $K$ is given by a relation of this type $f = C\,{m^x}{K^y}$; where $C$ is a dimensionless quantity. The value of $x$ and $y$ are
Amount of solar energy received on the earth's surface per unit area per unit time is defined a solar constant. Dimension of solar constant is