$M{L^{ - 1}}{T^{ - 2}}$ એ કઈ રાશિ પ્રદર્શિત કરે?
પ્રતિબળ
યંગ મોડ્યુલસ
દબાણ
ઉપરની બધી જ
કોઇ પદ્ધતિમાં પ્રકાશનો વેગ $(c)$, ગુરુત્વાકર્ષણ અચળાંક $(G)$ અને પ્લાન્ક અચળાંક $(h)$ ને મૂળભૂત એકમો તરીકે લીધેલા છે. તો આ નવી પદ્ધતિ મુજબ સમયનું પરિમાણિક સૂત્ર શુ થાય?
આઇન્સ્ટાઇનના પ્રખ્યાત સાપેક્ષવાદને આધારે દળ $(m)$ એ ઊર્જા $(E)$ સાથે $E = mc^2$ સંબંધથી સંકળાયેલ છે.
જ્યાં $c =$ શૂન્યાવકાશમાં પ્રકાશનો વેગ છે. ન્યુકિલયર ઊર્જાનું મૂલ્ય સૂક્ષ્મ હોય અને તે $Mev$ માં મપાય છે. જ્યાં $1\,MeV = 1.6\times 10^{-13}\,J$ ; જેમાં દ્રવ્યમાન (એટોમિક માસ યુનિટ) $amu$ માં મપાય છે તથા $1\,u = 1.67 \times 10^{-27}\, kg$.
$(a)$ $1\,u = 931.5\, MeV$ મેળવો.
$(b)$ એક વિધાર્થીએ $1\,u = 931.5\, MeV$ લખ્યો છે જે પારિમાણિક દૃષ્ટિએ ખોટો હોવાનું શિક્ષકે કહ્યું છે તો સાચો સંબંધ લખો.
વિધાન: પ્રવાહીનું વિશિષ્ટ ગુરુત્વાકર્ષણ એ પરિમાણરહિત રાશિ છે.
કારણ: તે પ્રવાહી ની ઘનતા નો પાણીની ઘનતા સાથે નો ગુણોત્તર છે
બર્નુલીનું સમીકરણ $p\,\, + \;\,\frac{1}{2}\rho {v^2}\,\, + \;\,h\rho g\,\, = \,\,k$મુજબ આપવામાં આવે છે.
જ્યાં $p =$ દબાણ, $\rho $ = ઘનતા $v $ = ઝડપ $ h =$ પ્રવાહી સ્તંભની ઊચાઈ, $ g = $ ગુરૂત્વાકર્ષણને લીધે પ્રવેગ અને $k$ અચળાંક છે. નીચેના પૈકી કોનું પારિમાણિક સૂત્ર $ k $ ના સૂત્રને સમાન હોય છે?