${q_1},\;{q_2},\;{q_3}$ व ${q_4}$ बिन्दु आवेश चित्रानुसार स्थित हैं। $S$ एक $R$ त्रिज्या का गॉसीय पृष्ठ है। गॉस नियम के अनुसार निम्न में से क्या सही है

112-14

  • A

    $\oint_s {({{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}).d\vec A} = \frac{{{q_1} + {q_2} + {q_3}}}{{2{\varepsilon _0}}}$

  • B

    $\oint_s {({{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}).d\vec A} = \frac{{({q_1} + {q_2} + {q_3})}}{{{\varepsilon _0}}}$

  • C

    $\oint_s {({{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}).d\vec A} = \frac{{({q_1} + {q_2} + {q_3} + {q_4})}}{{{\varepsilon _0}}}$

  • D

    None of the above

Similar Questions

तीन समान धन आवेश $q$ एक समबाहु त्रिभुज के शीर्षों पर रखे हैं परिणामी विद्युत बल रेखाऐं निम्न प्रकार से खींची जा सकती है

  • [IIT 2001]

एक $R$ त्रिज्या वाले आवेशित कोश पर कुल आवेश $Q$ है। एक लम्बाई $h$ और त्रिज्या $r$ वाले बेलनाकार बंद पृष्ठ, जिसका केन्द्र कोश के केन्द्र पर ही है, से गुजरने वाला विधुत  फ्लक्स (flux) $\Phi$ है। यहाँ बेलन का केन्द्र इसके अक्ष पर एक बिन्दु है जो कि ऊपरी और निचली सतह से समान दूरी पर है। निम्नलिखित कथनों में से कौनसा (से) सही है(हैं) ? [मुक्त आकाश (free space) की विधुत शीलता $\epsilon_0$ है]

$(1)$ यदि $h >2 R$ और $r > R$ तब $\Phi=\frac{ Q }{\epsilon_0}$

$(2)$ यदि $h <\frac{8 R }{5}$ और $r =\frac{3 R }{5}$ तब $\Phi=0$

$(3)$ यदि $h >2 R$ और $r =\frac{4 R }{5}$ तब $\Phi=\frac{ Q }{5 \epsilon_0}$

$(4)$ यदि $h >2 R$ और $r =\frac{3 R }{5}$ तब $\Phi=\frac{ Q }{5 \epsilon_0}$

  • [IIT 2019]

एक आवेश $q$ चित्रानुसार एक बंद सतह द्वारा घिरा हुआ है, जो ऊँचाई $h$ व आधार त्रिज्या $R$ वाले एक उल्टे शंकु तथा त्रिज्या $R$ वाले अर्धगोले से निर्मित है। शंक्वाकार सतह से निर्गत विधुत फ्लक्स का मान $\frac{n q}{6 \epsilon_0}$ ($SI$ इकाई में) हो तो $n$ का मान ज्ञात कीजिये।

  • [IIT 2022]

यदि एक आवेश $q$ को एक अचालक बंद अर्द्धगोलाकार सतह के केन्द्र पर रखा जाता है तो समतल सतह से गुजरने वाला कुल फ्लक्स होगा

  • [JEE MAIN 2022]

नीचे दो कथन दिए गए है, एक को अभिकथन $A$ एवं दूसरे को कारण $\mathrm{R}$ कहा गया है

अभिकथन $\mathrm{A}$ : यदि $30 \times 10^{-5} \mathrm{Cm}$ द्विध्रुव आघूर्ण वाला एक विद्युत द्विध्रुव, किसी बंद पृष्ठ से घिरा है, तो पृष्ठ

से निकलने वाले कुल फ्लक्स का मान शून्य होगा।

कारण $R$ : विद्युत द्विध्रुव में दो समान एवं विपरीत आवेश होते हैं।

उपर्युक्त कथनों के प्रकाश में, नीचे दिए गए विकल्पों में से सही उत्तर चुनें।

  • [JEE MAIN 2023]