- Home
- Standard 11
- Chemistry
કયા અલ્પદ્રાવ્ય ક્ષાર માટે $k_{sp}$ તથા $S$ (દ્રાવ્યતા) વચ્ચેનો સંબંધ $S=(K_{SP}/4)^{1/3}$ વડે આપી શકાય.?
$Ba$$SO_4$
$Al_2(SO_4)_3$
$Hg_2$$Cl_2$
$Ag_3(P$$O_4$)
Solution
$BaSO_4\rightleftharpoons Ba^{2+} + SO_4^{2-}$ $k_{sp}=s^2 $ $\therefore s = \sqrt {{k_{sp}}} $
$Ca_3(PO_4)_2\rightleftharpoons 3Ca^{2+} + 2PO_4^{3-}$ $k_{sp}=(3S)^3\times (2S)^2=108s^5$ $\therefore \,\,s\, = \,\,{\left( {\frac{{{K_{sp}}}}{{108}}} \right)^{1/5}}$
$Hg_2Cl_2\rightleftharpoons Hg_2^{2+}+2Cl^-$ $k_{sp} = S \times (2s)^2 = 4s^3$ $\therefore \,\,\,s\,\, = \,\,{\left( {\frac{{{K_{sp}}}}{4}} \right)^{1/3}}$
$Ag_3PO_4 \rightleftharpoons 3Ag^++PO_4^{3-}$ $k_{sp} = (3s)^3 \times s = 27s^4$ $\therefore \,\,s\,\, = \,\,{\left( {\frac{{{K_{sp}}}}{{27}}} \right)^{1/4}}$
$Cus \rightleftharpoons Cu^{2+}+s^{2-} \,\,,k_{sp}=s^2$ $\therefore \,\,s\,\, = \,\,\sqrt {ksp} $