$L$ લંબાઈ અને $R$ ત્રિજ્યાનો એક નળાકાર લો કે જેની અક્ષો વિદ્યુતક્ષેત્ર ને સમાંતર હોય નળાકાર સાથે સંકળાયેલ કુલ વિદ્યુત ફલક્સ ....... છે.
$2\pi R^2E$
$\pi R^2L/E$
$\pi R^2LE$
$zero$
આકૃતિ વિદ્યુતક્ષેત્ર સાથે (સંલગ્ન) કેટલીક વિદ્યુત રેખાઓ દર્શાવે છે. તો......
બે સમાંતર સુવાહક પૃષ્ઠોની એકબાજુનું ક્ષેત્રફળ $A$ છે. જો કોઈ એક પૃષ્ઠને વિદ્યુતભાર $Q$ આપવામાં આવે અને બીજીને તટસ્થ રાખવામાં આવે, તો બંને પૃષ્ઠોની વચ્ચે કોઈ બિંદુ પાસે વિદ્યુતક્ષેત્ર કેટલું છે ?
વિદ્યુત ફલક્સની વ્યાખ્યા આપો.
એક અનંત રેખીય વિદ્યુતભાર $7 \,cm$ ત્રિજ્યાના અને $1 \,m$ લંબાઈના નળાકારની અક્ષ પાસે છે. જો નળાકારની વક્ર સપાટી પરના કોઈપણ બિંદુએ વિદ્યુતક્ષેત્ર $250 \,NC ^{-1}$ નળાકારમાંથી કુલ વિદ્યુત ફ્લક્સ .......... $Nm ^2 C ^{-1}$ છે.
પૃથ્વીની સપાટીથી ઉપરની બાજુ પર વાતાવરણમાં સરેરાશ વિદ્યુતક્ષેત્રનું મૂલ્ય લગભગ $150\, N/C$ છે. જેની દિશા પૃથ્વીના કેન્દ્ર તરફ છે. તો પૃથ્વીની સપાટી દ્વારા કુલ કેટલા પૃષ્ઠ વિજભારનું ($kC$ માં) વહન થતું હશે?
[${\varepsilon _0} = 8.85 \times {10^{ - 12}}\,{C^2}/N - {m^2},{R_E} = 6.37 \times {10^6}\,m$]