ગાઉસનો નિયમ કઈ પ્રણાલી માટે વિદ્યુતક્ષેત્રની સરળ ગણતરીમાં મદદ કરે છે ?
માત્ર ગતિમાન વિદ્યુતભાર માટે
કોઈપણ વિદ્યુતભાર રચના માટે
કોઈપણ સંમમિત વિદ્યુતભાર રચના માટે
કેટલીક ખાસ વિદ્યુતભાર રચના માટે
ગૉસનો નિયમ લખો અને તેનું સૂત્ર આપો.
$1\, mm$ ત્રિજ્યાના લાંબા સુરેખ તાર પર વિદ્યુતભાર સમાન રીતે વિતરિત થયેલો છે. તારની પ્રતિ $cm$ લંબાઈ $Q$ દીઠ વિદ્યુતભાર $Q$ કુલંબ છે. $50\, cm$ ત્રિજ્યા અને $1\, m$ લંબાઈના તારથી સંમિત રીતે ઘેરાયેલો છે. નળાકાર ના પૃષ્ઠમાંથી પસાર થતું કુલ ફલક્સ .......... છે.
નાના કદમાં વિદ્યુતભારનું વિતરણ કરેલ છે તો સમગ્ર વિદ્યુતભારને ઘેરતા $10\, cm$ ત્રિજ્યા ગોળાકાર સપાટી પર ફલક્સ $20\, Vm$ છે તો સમકેન્દ્રીય $20\, cm$ ત્રિજ્યાવાળી ગોળાકાર સપાટી માંથી નીકળતુ ફલક્સ .........$Vm$ થાય?
$10.0\; cm$ ત્રિજ્યા ધરાવતી ગોળાકાર ગૉસિયન સપાટીના કેન્દ્ર પર મૂકેલા બિંદુવત વિદ્યુતભારને લીધે તે સપાટીમાંથી $-1.0 \times 10^{3}\; N\;m ^{2} / C$ નું ફલક્સ પસાર થાય છે. $(a)$ જો ગૉસિયન સપાટીની ત્રિજ્યા બમણી કરવામાં આવી હોત તો સપાટીમાંથી કેટલું ફલક્સ પસાર થતું હોત? $(b)$ બિંદુવતુ વિદ્યુતભારનું મૂલ્ય કેટલું હશે?
બે ક્ષેત્રરેખાઓ એકબીજાને કેમ છેદતી નથી? તે સમજાવો ?