- Home
- Standard 12
- Physics
$q$ વિદ્યુતભારીત એક કણ બીજા નિયત કરેલા $Q$ વિદ્યુતભારીત કણ સાથે $v$ ઝડપે અથડાય છે. તે $Q$ ની એકદમ નજીક $r$ અંતરે આવીને પાછો ફરે છે. જો $q$ ને $2v$ ની ઝડપ આપવામાં આવતી હોય તો નજીકનું અંતર ....... હશે.

$r$
$2r$
$r/2$
$r/4$
Solution
As initially $q$ is at infinite distance from $Q$, thus $P \cdot E_i=0$
For case 1: the closest distance given is $r$ and velocity of $q$ is $v$ initially.
Applying conservation of energy, $P . E_i+K . E_i=P . E_f+K . E_f$
$0 +\frac{1}{2} mv ^2=\frac{ KQq }{ r }+0$
$\Rightarrow \frac{1}{2} mv ^2 =\frac{ KQq }{ r } \quad \ldots \ldots \ldots \ldots \ldots . . .(1)$
For case $1$: Let the closest distance be $r^{\prime}$ and velocity of $q$ is $2 v$ initially.
Applying conservation of energy, $P \cdot E_i+K \cdot E_i=P \cdot E_f+K \cdot E_f$
$+\frac{1}{2} m (2 v )^2=\frac{ KQq }{ r ^{\prime}}+0$
$\Rightarrow \frac{1}{2} m (2 v )^2=\frac{ KQq }{ r ^{\prime}} \quad \ldots \ldots \ldots \ldots . . .(2)$
Solving $(1)$ and $(2)$, $r^{\prime}=\frac{r}{4}$