$S(r)\,\, = \,\,\frac{Q}{{\pi {R^4}}}\,r$ એ $R$ ત્રિજ્યા અને કુલ વિદ્યુતભાર $Q$ વાળા એક ધન ગોળાના વિદ્યુતભાર વિતરણની ઘનતા આપે છે. ગોળાના કેન્દ્રથી $r_1$ અંતરે ગોળાની અંદરના બિંદુ $P$ માટે વિદ્યુતક્ષેત્રનું મૂલ્ય ....... છે.

  • A

    $\frac{{Qr_1^2}}{{4\pi \,\,{ \in _0}\,\,{R^4}}}$

  • B

    $\frac{{Qr_1^2}}{{3\pi \,\,{ \in _0}\,{R^4}}}$

  • C

    $0$

  • D

    $\frac{Q}{{4\pi \,\,{ \in _0}\,r_1^2}}$

Similar Questions

$Z$ પરમાણું ક્રમાંક ધરાવતા પરમાણુને $R$ ત્રીજ્યાના ગોળાની અંદર એકસમાન વિતરીત ઋણ વિદ્યુતભારના વિતરણ વડે ઘેરાયેલો અને કેન્દ્ર પાસે ઘન વિદ્યુતભાર ધરાવે છે તેમ ધ્યાનમાં લો. પરમાણુની અંદર કેન્દ્રથી $r$ અંતરે આવેલા બિંદુુએ વિદ્યુતક્ષેત્ર કેટલું છે?

$10 \,cm$ ત્રિજ્યાના એકરૂપ વિદ્યુતભારીત અવાહક ગોળાના કેન્દ્રથી $20 \,cm$ અંતરે વિદ્યુતક્ષેત્ર $E$ છે. તો $5 \,cm$ અંતરે કેટલું હશે ?

આકૃતિમાં કોઈ વસ્તુ માટે વિદ્યુતક્ષેત્ર $E_{(r)}$ વિરુદ્ધ કોઈ બિંદુના તે વસ્તુના કેન્દ્રથી અંતર $(r)$ માટેનો આલેખ છે, તેથી......

$(a)$ દર્શાવો કે સ્થિરવિધુતક્ષેત્રના લંબ ઘટકનું, વિધુતભારિત સપાટીની એકબાજુથી બીજી બાજુ સુધી અસતતપણું 

$\left( E _{2}- E _{1}\right) \cdot \hat{ n }=\frac{\sigma}{\varepsilon_{0}}$

દ્વારા અપાય છે. જ્યાં, ${\hat n}$ તે બિંદુએ સપાટીને લંબ એકમ સદિશ છે. $\sigma $ તે બિંદુએ વિધુતભારની પૃષ્ઠ ઘનતા છે. ( ${\hat n}$ ની દિશા બાજુ $1$ થી $2$ બાજુ  તરફ છે. ) આ પરથી દર્શવો કે સુવાહકની તરત બહાર વિધુતક્ષેત્ર ${\sigma \hat n/{\varepsilon _0}}$ છે. 

$(b)$ દર્શાવો કે સ્થિતવિદ્યુત ક્ષેત્રનો સ્પર્શીય $(Tangential)$ ઘટક, વિદ્યુતભારિત સપાટીની એક બાજુથી બીજી બાજુ સુધી સતત હોય છે. [ સૂચનઃ $(a)$ માટે ગોસના નિયમનો ઉપયોગ કરો. $(b)$ માટે સ્થિત વિદ્યુત ક્ષેત્ર વડે બંધ ગાળા પર કરેલું કાર્ય શૂન્ય છે તે હકીકતનો ઉપયોગ કરો. ]

બે મોટી, પાતળી ધાતુની પ્લેટો એકબીજાની નજીક અને સમાંતર છે. તેમની અંદરની બાજુઓ પર  વિરૂદ્ધ ચિહ્નો ધરાવતી અને $17.0\times 10^{-22}\; C/m^2$ મૂલ્યની વિદ્યુતભારની પૃષ્ઠઘનતા છે. $(a)$ પ્રથમ પ્લેટની બહારના વિસ્તારમાં $(b)$ બીજી પ્લેટની બહારના વિસ્તારમાં અને $(c)$ બંને પ્લેટોની વચ્ચેના વિસ્તારમાં વિદ્યુતક્ષેત્ર $E$ શોધો.