$\rho(r)=\left\{\begin{array}{ll}\rho_{0}\left(\frac{3}{4}-\frac{r}{R}\right) & \text { for } r \leq R \\ \text { Zero } & \text { for } r>R\end{array}\right.$

 અનુસાર બદલાતી ગોલીય સંમિત વિદ્યુતભાર વહેંચણી વિચારો,જ્યાં $r ( r < R )$ એ કેન્દ્રથી અંતર છે (આકૃતિ જુઓ) $P$ બિંદુ આગળ વિદ્યુતક્ષેત્ર $......$ હશે.

209863-q

  • [JEE MAIN 2022]
  • A

    $\frac{\rho_{0} r}{4 \varepsilon_{0}}\left(\frac{3}{4}-\frac{r}{R}\right)$

  • B

    $\frac{\rho_{0} r}{3 \varepsilon_{0}}\left(\frac{3}{4}-\frac{r}{R}\right)$

  • C

    $\frac{\rho_{0} r}{4 \varepsilon_{0}}\left(1-\frac{r}{R}\right)$

  • D

    $\frac{\rho_{0} r}{5 \varepsilon_{0}}\left(1-\frac{r}{R}\right)$

Similar Questions

 $12 \,cm$ ત્રિજ્યાના એક ગોળાકાર સુવાહકની સપાટી પર $1.6 \times 10^{-7} \;C$ વિદ્યુતભાર નિયમિત રીતે વિતરિત થયેલો છે.

$(a)$ ગોળાની અંદર

$(b)$ ગોળાની તરત બહાર

$(c)$ ગોળાના કેન્દ્રથી $18 \,cm$ અંતરે આવેલા બિંદુએ - વિદ્યુતક્ષેત્ર કેટલું છે?

$+3\,Q$ વિદ્યુતભાર ધરાવતા ગોળાને $-Q$ વિદ્યુતભાર ધરાવતી ગાળીય કવચની અંદર સમકેન્દ્રિય મૂકેલ છે.ગોળાની ત્રિજયા $a$ એ ગોળીય કવચની ત્રિજયા $b(b>a)$ કરતાં નાની છે.હવે,કેન્દ્રથી $R>a$ બિંદુએ વિદ્યુતક્ષેત્ર કેટલું થાય?

$Z$ પરમાણું ક્રમાંક ધરાવતા પરમાણુને $R$ ત્રીજ્યાના ગોળાની અંદર એકસમાન વિતરીત ઋણ વિદ્યુતભારના વિતરણ વડે ઘેરાયેલો અને કેન્દ્ર પાસે ઘન વિદ્યુતભાર ધરાવે છે તેમ ધ્યાનમાં લો. પરમાણુની અંદર કેન્દ્રથી $r$ અંતરે આવેલા બિંદુુએ વિદ્યુતક્ષેત્ર કેટલું છે?

સમકેન્દ્રિય ગોળીય કવચ $A$ અને $B $ ની  ત્રિજયાઓ $r_A$ અને $r_B(r_B>r_A)$ છે.તેના પર વિદ્યુતભાર $Q_A$ અને $-Q_B(|Q_B|>|Q_A|)$ છે.તો વિદ્યુતક્ષેત્ર વિરુધ્ધ અંતરનો નો આલેખ કેવો થાય?

  • [AIIMS 2005]

નીચે આપેલા સમાન રીતે વિધુતભારિત ઉદ્ભવતાં વિધુતક્ષેત્રનું સૂત્ર મેળવો.

$(i)$ અનંત સમતલ વડે

$(ii)$ પાતળી ગોળાકાર કવચને લીધે તેની બહારના બિંદુએ

$(iii)$ પાતળી ગોળાકાર કવચના લીધે તેની અંદરના બિંદુએ