એક ધન ધાતુના ગોળા પાસે $+ 3Q$ વિદ્યુતભાર છે. જે $-Q$ વિદ્યુતભાર વાળા સુવાહક ગોળીય કવચને સમકેન્દ્રિત છે. ગોળાની ત્રિજ્યા $a$ અને ગોળીય કવચની $b$ છે. $(b > a)$. કેન્દ્રથી $R$ અંતર આગળ $(a < R < b) \,f$ વિદ્યુતક્ષેત્ર ....... છે.

  • A

    $\frac{{4Q}}{{2\pi {\varepsilon _0}{R^2}}}$

  • B

    $\frac{{3Q}}{{4\pi {\varepsilon _0}{R^2}}}$

  • C

    $\frac{{3Q}}{{2\pi {\varepsilon _0}{R^2}}}$

  • D

    $\frac{Q}{{2\pi {\varepsilon _0}R}}$

Similar Questions

સમાન અને વિરૂદ્ધ વિદ્યુતભારની ઘનતા $\sigma$ વાળી બે અને સમાંતર તકતીઓ એકબીજાથી અંતરે આવેલી છે. તકતીઓના વચ્ચે આવેલ બિંદુ આગળ વિદ્યુતક્ષેત્ર ......... છે.

પરમાણુનું પરિમાણ એંગસ્ટ્રોમના ક્રમનું છે. તેથી તેમાં ઇલેક્ટ્રોન્સ અને પ્રોટોન્સ વચ્ચે ખૂબજ મોટું વિધુતક્ષેત્ર હોવું જોઈએ, તો પછી શા માટે ધાતુની અંદર સ્થિત વિધુતક્ષેત્ર શૂન્ય છે ? 

સમાન વિદ્યુતભારતી ગોળીય કવચના $q_1$ અને $q_2$ ખંડને લીધે $P$ બિંદુ આગળ ચોખ્ખું વિદ્યુતક્ષેત્ર ...... છે. $( C $ એ કવચનું કેન્દ્ર આપેલ છે.$)$

એક ગોળા પર એકસમાન વિજભાર પથરાયેલ છે તેની વિજભાર ઘનતા નીચે મુજબ આપવામાં આવે છે.

$\rho (r)\, = \,{\rho _0}\left( {1 - \frac{r}{R}} \right)$,  $r < R$ માટે

$\rho (r)\,=\,0$, $r\, \ge \,R$ માટે

જ્યાં $r$ એ વિજભાર વિતરણના કેન્દ્રથી અંતર અને $\rho _0$ અચળાંક છે. $(r < R)$ ના અંદરના બિંદુ પાસે વિદ્યુતક્ષેત્ર કેટલું મળે?

  • [JEE MAIN 2014]

$\rho(r)=\left\{\begin{array}{ll}\rho_{0}\left(\frac{3}{4}-\frac{r}{R}\right) & \text { for } r \leq R \\ \text { Zero } & \text { for } r>R\end{array}\right.$

 અનુસાર બદલાતી ગોલીય સંમિત વિદ્યુતભાર વહેંચણી વિચારો,જ્યાં $r ( r < R )$ એ કેન્દ્રથી અંતર છે (આકૃતિ જુઓ) $P$ બિંદુ આગળ વિદ્યુતક્ષેત્ર $......$ હશે.

  • [JEE MAIN 2022]