English
Hindi
1. Electric Charges and Fields
medium

ઊગમબિંદુ આગળ $0.009\ \mu C$ નો બિંદુવત વિદ્યુતભાર મૂકેલો છે. બિંદુ $(\sqrt 2 ,\,\,\sqrt 7 ,\,\,0)$ આગળ આ બિંદુવત વિદ્યુતભારને લીધે વિદ્યુતક્ષેત્રની તીવ્રતાની ગણતરી કરો.

A

$\left( {3\sqrt 2 \hat i\,\, + \;\,7\sqrt 7 \hat j} \right)\,\,N{C^{ - 1}}$

B

$\left( {3\sqrt 2 \hat i\,\, + \;\,3\sqrt 7 \hat j} \right)\,\,N{C^{ - 1}}$

C

$\left( {\sqrt 2 \hat i\,\, + \;\,3\sqrt 7 \hat j} \right)\,\,N{C^{ - 1}}$

D

$\left( {2\sqrt 2 \hat i\,\, + \;2\,\sqrt 7 \hat j} \right)\,\,N{C^{ - 1}}$

Solution

$\overrightarrow E \,\,\, = \,\,\frac{{q\overrightarrow r }}{{4\pi \,\,{ \in _0}\,\,{r^3}}};\,\,\overrightarrow r \,\, = \,\,x\hat i\,\, + \,\,y\hat j\,\, = \,\,\sqrt 2 \hat i\,\, + \;\,\sqrt 7 \hat j$

$\overrightarrow E \,\, = \,\,\frac{{9\,\, \times \,\,{{10}^5}\,\, \times \,\,9\,\, \times \,\,{{10}^{ – 9}}\,\,\left( {\sqrt 2 \hat i\,\, + \,\,\sqrt 7 \hat j} \right)}}{{{{\left( 3 \right)}^3}}}\,\, = \,\,\left( {3\sqrt 2 \hat i\,\, + \;\,3\sqrt 7 \hat j} \right)\,\,N{C^{ – 1}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.