English
Hindi
1. Electric Charges and Fields
normal

એક વિદ્યુતભાર $Q$ બે ભાગ $Q_1$ અને $Q_2$ માં વહેચાય છે. આ વિદ્યુતભારો $R$ અંતરે મૂકેલા છે. તેઓ વચ્ચેનું મહત્તમ અપાકર્ષી બળ માટે $Q_1$ અને $Q_2$ શું હશે ?

A

${Q_1}\,\, = \,\,Q\,\, - \,\,\frac{Q}{R},\,\,{Q_2}\, = \,\,\frac{Q}{R}$

B

${Q_1}\, = \,\,\frac{{2Q}}{3},\,\,{Q_2}\,\, = \,\,\frac{Q}{3}$

C

${Q_1}\,\, = \,\,\frac{{3Q}}{4},\,{Q_2}\, = \,\,\frac{Q}{4}$

D

${Q_1} = \,\,{Q_2}\, = \,\,\frac{Q}{2}$

Solution

$Q\,\, = \,\,{Q_1}\,\, + \;\,{Q_2}$

$F\,\, = \,\,\frac{{k{Q_1}{Q_2}}}{{{R^2}}}\,\, = \,\,\frac{{k{Q_1}\,\,\left( {Q\,\, – \,\,{Q_1}} \right)}}{{{R^2}}}$

મહતમ અપાકર્ષણ સ્થિતિ $\frac{{dF}}{{d{Q_1}}}\,\, = \,\,0$

$\therefore \,\,\frac{k}{{{R^2}}}\,\,\frac{d}{{d{Q_1}}}\,\,\left( {{Q_1}\,\,Q\, – \,\,Q_1^2} \right)\,\, = \,\,\frac{k}{{{R^2}}}\,\,\left( {Q\,\, – \,\,2{Q_1}} \right)\,\, = \,\,0$

$Q\,\, – \,\,2{Q_1}\,\, = \,\,0\,\,;\,\,{Q_1}\,\, = \,\,\frac{Q}{2}\,\, \Rightarrow \,\,{Q_2}\,\, = \,\,Q\,\, – \,\,{Q_1}\,\, = \,\,\frac{Q}{2}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.