$ABC$ is an equilateral triangle. Length of each side is $a$ and centroid is point $O$. Find $\overrightarrow{A B}+\overrightarrow{A C}=n \overrightarrow{A O}$ then $n = ........ $
$0$
$1$
$2$
$3$
When $n$ vectors of different magnitudes are added, we get a null vector. Then the value of $n$ cannot be
Figure shows a body of mass m moving with a uniform speed $v$ along a circle of radius $r$. The change in velocity in going from $A$ to $B$ is
There are two force vectors, one of $5\, N$ and other of $12\, N $ at what angle the two vectors be added to get resultant vector of $17\, N, 7\, N $ and $13 \,N$ respectively
A particle is situated at the origin of a coordinate system. The following forces begin to act on the particle simultaneously (Assuming particle is initially at rest)
${\vec F_1} = 5\hat i - 5\hat j + 5\hat k$ ${\vec F_2} = 2\hat i + 8\hat j + 6\hat k$
${\vec F_3} = - 6\hat i + 4\hat j - 7\hat k$ ${\vec F_4} = - \hat i - 3\hat j - 2\hat k$
Then the particle will move
Two vectors $\vec A$ and $\vec B$ have magnitudes $2$ and $1$ respectively. If the angle between $\vec A$ and $\vec B$ is $60^o$, then which of the following vectors may be equal to $\frac{{\vec A}}{2} - \vec B$