- Home
- Standard 11
- Physics
$ABC$ is an equilateral triangle. Length of each side is $a$ and centroid is point $O$. Find $\overrightarrow{A B}+\overrightarrow{A C}=n \overrightarrow{A O}$ then $n = ........ $

$0$
$1$
$2$
$3$
Solution
$\overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}$ and
$\overrightarrow{A C}=\overrightarrow{A O}+\overrightarrow{O C}$
$\therefore \overrightarrow{A B}+\overrightarrow{A C}=2 \overrightarrow{A O}+\overrightarrow{O B}+\overrightarrow{O C} \ldots$ (1)
but $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{0}$
$\therefore \overrightarrow{O B}+\overrightarrow{O C}=-\overrightarrow{O A}=\overrightarrow{A O} \ldots$ (2)
by $(1)$ and $(2)$
$\overrightarrow{A B}+\overrightarrow{A C}=2 \overrightarrow{A O}+\overrightarrow{A O}$
$\overrightarrow{A B}+\overrightarrow{A C}=3 \overrightarrow{A O} \therefore n=3$