કયા ખૂણે બે બળો $(x + y)$ અને $(x - y) $ એ પ્રક્રિયા કરે છે. તેથી તેમનું પરિણામી લગભગ $\sqrt {\left( {{x^2}\,\, + \;\,{y^2}} \right)} $ મળે ?
${\cos ^{ - 1}}\,\,\frac{{ - \left( {{x^2}\,\, + \;\,{y^2}\,\,} \right)}}{{2\,\,\left( {{x^2}\,\, - \,\,{y^2}} \right)}}$
${\cos ^{ - 1}}\frac{{ - 2\,\,\left( {{x^2}\,\, - \,\,{y^2}} \right)}}{{{x^2}\,\, + \;\,{y^2}}}$
${\cos ^{ - 1}}\,\,\frac{{ - \left( {{x^2}\, + \,{y^2}} \right)}}{{{x^2}\,\, - \,\,{y^2}}}$
${\cos ^{ - 1}}\frac{{\left( {{x^2}\,\, - \,\,{y^2}} \right)}}{{{x^2}\,\, + \;\,{y^2}}}$
જો $\,|\mathop A\limits^ \to \,\, + \;\;\mathop B\limits^ \to |\,\, = \,\,|\mathop A\limits^ \to |\,\, = \,\,|\mathop B\limits^ \to |\,\,$ હોય $A$ અને $B$ વચ્ચેનો ખૂણો ............ $^o$ હોય .
જો $\,|\mathop A\limits^ \to \,\, \times \,\,\mathop B\limits^ \to |\,\, = \,\,\sqrt 3 \,\,\mathop A\limits^ \to .\mathop B\limits^ \to $ હોય તો $\,|\mathop A\limits^ \to \, + \,\mathop B\limits^ \to |$ નું મૂલ્ય શું થશે ?
કયા ખૂણે બે બળો $(x + y)$ અને $(x - y)$ એ પ્રક્રિયા કરે છે. તેથી તેમનું પરિણામી લગભગ $\sqrt {\left( {{x^2}\,\, + \;\,{y^2}} \right)} $ મળે ?
$\int\limits_0^{\pi /4} {\sin \,\,2x\,\,dx}$ સદીશનું મૂલ્ય .... થાય .
કેટલાક સદિશોના પરિણામીનો $x$ ઘટક.......$(a)$ એ સદિશોના $x$ ઘટકના સરવાળા જેટલો હોય છે. $(b)$ સદિશોના મૂલ્યના સરવાળા કરતાં કદાચ ઓછો હોય છે. $(c)$ સદિશોના મૂલ્યના સરવાળા કરતાં કદાચ વધારે હોય છે. $(d)$ સદિશોના મૂલ્યના સરવાળા જેટલો હોય છે.