અલગ અલગ મૂલ્ય ધરાવતાં એક જ સમતલના કેટલા સદિશોનો સરવાળો કરતાં પરિણામી શૂન્ય મળે છે?
$2$
$3$
$4$
$5$
કયા ખૂણે બે બળો $(x + y)$ અને $(x - y) $ એ પ્રક્રિયા કરે છે. તેથી તેમનું પરિણામી લગભગ $\sqrt {\left( {{x^2}\,\, + \;\,{y^2}} \right)} $ મળે ?
જો ત્રણ સદિશ વચ્ચેનો સંબંધ $\vec A . \vec B =0 $ અને $\vec A . \vec C =0$ હોય તો $\vec A $ ને સમાંતર .... થાય
ભૌતિક રાશિ કે જેને દિશા હોય છે. તેને......
ત્રણ સદિશોમાંથી બે સમાન સદિશો છે,અને એકનું મૂલ્ય બીજા બે સદિશો કરતાં $\sqrt 2 $ ગણું છે, જો $\overrightarrow A + \overrightarrow B + \overrightarrow C = 0$ હોય,તો સદિશો વચ્ચેનો ખૂણો
$\mathop {\text{A}}\limits^ \to \,\, = \,\,\hat iA\cos \theta \,\, + \;\,\hat jA\sin \theta ,$ જે સદીશ છે બીજો સદીશ $\mathop B\limits^ \to $ જે $\mathop A\limits^ \to $ ને લંબ હોય તો .... થાય.