સમગુણોત્તર શ્રેણીનાં ત્રણ ક્રમિક પદનો ગુણાકાર $216$ છે અને તેનાં બે-બે પદોના ગુણાકારનો સરવાળો $156$ છે, તો આ પદ.... હશે.
$1, 3, 9$
$2, 6, 18$
$3, 9, 27$
$2, 4, 8$
જો $a_{1}, a_{2}, a_{3}, \ldots$ એ સમગુણોતર શ્રેણીમાં છે કે જેથી $a_{1}<0$ ; $a_{1}+a_{2}=4$ અને $a_{3}+a_{4}=16.$ જો $\sum\limits_{i=1}^{9} a_{i}=4 \lambda,$ તો $\lambda$ મેળવો.
જેના સામાન્ય ગુણોત્તર $3$ હોય તેવી $n$ પદવાળી સમગુણોત્તર શ્રેણીનાં $n$ પદનો સરવાળો $364$ હોય અને તેનું છેલ્લું પદ $243$ હોય, તો $n = ……$
સમગુણોત્તર શ્રેણીમાં ત્રીજા અને ચોથા પદનો સરવાળો $60$ અને તે શ્રેણીના પ્રથમ ત્રણ પદોનો ગુણાકાર $1000$ છે. જો સમગુણોત્તર શ્રેણીનું પ્રથમ પદ ધન હોય તો સાતમું પદ મેળવો ?
સમીકરણ $x^2 - 18x + 9 = 0$ ઉકેલો વચ્ચેનો સમગુણોત્તર મધ્યક કયો હશે ?
જો $f(\theta)=\frac{\sin ^4 \theta+3 \cos ^2 \theta}{\sin ^4 \theta+\cos ^2 \theta}, \theta \in \mathbb{R}$ નો વિસ્તાર $[\alpha, \beta]$ હોય, તો જેનું પ્રથમ પદ $64$ હોય અને સામાન્ય ગુણોત્તર $\frac{\alpha}{\beta}$ હોય તેવી અનંત સમગુણોત્તર શ્રેણીનો સરવાળો ............ છે.