જો સમગુણોત્તર શ્રેણીના દ્વિતીય, તૃતીય અને ચતુર્થ ધન પદોનો સરવાળો $3$ અને તેનો છઠ્ઠું, સાતમું અને આઠમા પદોનો સરવાળો $243$ હોય તો આ શ્રેણીમાં પ્રથમ $50$ પદો સુધીનો સરવાળો કેટલો થાય ?
$\frac{2}{13}\left(3^{50}-1\right)$
$\frac{1}{26}\left(3^{50}-1\right)$
$\frac{1}{13}\left(3^{50}-1\right)$
$\frac{1}{26}\left(3^{49}-1\right)$
સમગુણોત્તર શ્રેણીનાં ત્રણ ક્રમિક પદનો ગુણાકાર $216$ છે અને તેનાં બે-બે પદોના ગુણાકારનો સરવાળો $156$ છે, તો આ પદ.... હશે.
જો ${a_1},{a_2}...,{a_{10}}$ એ સમગુણોત્તર શ્રેણીના પદો હોય અને $\frac{{{a_3}}}{{{a_1}}} = 25$ થાય તો $\frac {{{a_9}}}{{{a_{ 5}}}}$ ની કિમત મેળવો.
જો અનંત સમગુણોતર શ્રેણી $GP$ : $a, ar, ar^{2}, a r^{3}, \ldots$ ના પદોનો સરવાળો $15$ છે અને પદોનો વર્ગનો સરવાળો $150 $ થાય છે તો $\mathrm{ar}^{2}, \mathrm{ar}^{4}, \mathrm{ar}^{6} \ldots$ નો સરવાળો મેળવો.
એક માણસને $2$ માતા-પિતા, $4$ દાદા-દાદી, $8$ વડદાદા-વડદાદી વગેરે છે તો તેની $10$ મી પેઢીએ રહેલ પૂર્વજોની સંખ્યા શોધો.
${{(0.2)}^{{{\log }_{\sqrt{5}}}\left( \frac{\text{1}}{\text{4}}\,+\,\frac{\text{1}}{\text{8}}\,+\,\frac{\text{1}}{\text{16}}\,+\,.....\,\infty \right)}}$ નું મૂલ્ય: