જો સમગુણોત્તર શ્રેણીના દ્વિતીય, તૃતીય અને ચતુર્થ ધન પદોનો સરવાળો $3$ અને તેનો છઠ્ઠું, સાતમું અને આઠમા પદોનો સરવાળો $243$ હોય તો આ શ્રેણીમાં પ્રથમ $50$ પદો સુધીનો સરવાળો કેટલો થાય ?
$\frac{2}{13}\left(3^{50}-1\right)$
$\frac{1}{26}\left(3^{50}-1\right)$
$\frac{1}{13}\left(3^{50}-1\right)$
$\frac{1}{26}\left(3^{49}-1\right)$
જો $a, b, c, d$ અને $p$ એ શૂન્યેતર ભિન્ન વાસ્તવિક સંખ્યા એવી મળે કે જેથી $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+ cd ) p +\left( b ^{2}+ c ^{2}+ d ^{2}\right)=0$ થાય તો
સમગુણોત્તર શ્રેણીના પાંચમા, આઠમાં અને અગિયારમાં પદ અનુક્રમે $p, q$ અને $s$ હોય, તો બતાવો કે $q^{2}=p s$
જો સમગુણોતર શ્રેણીનું પાંચમું પદ $2$ હોય તો શ્રેણીના નવ પદોનો ગુણાકાર મેળવો. .
એક માણસ તેના ચાર મિત્રોને પત્ર લખે છે. તે દરેકને સૂચના આપે છે કે આ પત્ર તેમના અન્ય ચાર મિત્રોને મોકલે અને તેમને પણ આ જ પ્રમાણેની સાંકળ આગળ વધારવાની છે. માની લઈએ કે આ સાંકળ તૂટતી નથી અને દરેક પત્ર મોકલવાનો ખર્ચ $50$ પૈસા આવે છે, તો $8$ મી વખત પત્ર મોકલવાનો ખર્ચ શોધો.
જેનું પ્રથમ પદ $n ^{2}$ અને સામાન્ય ગુણોત્તર $\frac{1}{( n +1)^{2}}$ હોય તેવી અનંત સમગુણોતર શ્રેણીનો સરવાળો ધારો કે $S _{ n }$ છે, જ્યાં $n =1,2, \ldots \ldots, 50$ તો, $\frac{1}{26}+\sum_{ n =1}^{50}\left( S _{ n }+\frac{2}{ n +1}- n -1\right)$ ની કીમત................છે