જો $\left( {\begin{array}{*{20}{c}}
{n\, - \,1} \\
r
\end{array}} \right)\,\, = \,\,\left( {\,{k^2}\, - \,3\,} \right)\,\,\left( {\begin{array}{*{20}{c}}
n \\
{r\, + \,1}
\end{array}} \right)\,$ તો $k\, \in \,\,..........$
$[ - 2, - \sqrt 3 ]\,\, \cup \,\,[\sqrt 3 ,2]$
$( - 2, - \sqrt 3 )\,\, \cup \,\,(\sqrt 3 ,2)$
$( - 2, - \sqrt 3 ]\,\, \cup \,\,[\sqrt 3 ,2)$
$[ - 2,\sqrt 3 )\,\, \cup \,\,(\sqrt 3 ,2]$
$35$ સફરજન $3$ છોકરાઓ વચ્ચે એવી કેટલી રીતે વહેંચી શકાય કે જેથી દરેક પાસે કોઈપણ સંખ્યામાં સફરજન હોય $?$
$52$ પત્તાને ચાર બાળકોમાં કેટલી રીતે વહેચી શકાય કે જેથી ત્રણ બાળકો પાસે $17$ પત્તા આવે અને ચોથા બાળક પાસે ફક્ત એક પત્તુ આવે.
જો $a, b$ અને $c$ એ અનુક્રમે $^{19} \mathrm{C}_{\mathrm{p}},^{20} \mathrm{C}_{\mathrm{q}}$ અને $^{21 }\mathrm{C}_{\mathrm{r}}$ ની મહતમ કિમંતો હોય તો . . .
એક ક્લબની ચૂંટણીમાં સ્પર્ધકોની સંખ્યા એ મહતમ ઉમેદવારો કરતાં એક વધારે છે કે જે મતદાતા મત આપી શકે છે જો મતદાતા મત આપે તે કુલ $62$ રીતે આપે છે તો ઉમેદવારોની સંખ્યા મેળવો
$6$ ભારતીય અને $8$ વિદેશીમાંથી એક એવી વૈજ્ઞાનિક સમિતિ રચવામાં આવે છે, કે જેમાં ઓછામાં ઓછા $2$ ભારતીય અને ભારતીય કરતાં બમણી સંખ્યાના વિદેશીઓનો સમાવેશ થાય છે. તો આવી સમિતિ રચવાની રીતોની સંખ્યા ............છે.