English
Hindi
6.Permutation and Combination
hard

ગણ $A$ ના સભ્યોની સંખ્યા $2n + 1$ હોય તો ઓછામાં ઓછા $n$ સભ્યો હોય તેવા $A$ ના કેટલા ઉપગણો હશે ?

A

$2^n$

B

$2^{2n}$

C

${2^{2n}}\, + \,\left( {\begin{array}{*{20}{c}}{2n\, + \,1}\\n\end{array}} \right)$

D

$2^{2n-1}$

Solution

ઉપગણ ની સંખ્યા $ = \,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  n 
\end{array}} \right)\, + \,\frac{1}{2}\,$

$\left\{ {\left[ {\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {n\, + \,1} 
\end{array}} \right)\, + \,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {n\, + \,1} 
\end{array}} \right)} \right]\, + \,\left[ {\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {n\, + \,2} 
\end{array}} \right)\, + \,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {n\, + \,2} 
\end{array}} \right)} \right]} \right.$

$ + \,\left[ {\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {2n} 
\end{array}} \right)\, + \,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {2n} 
\end{array}} \right)} \right]\, + $

$\left. {\,\left[ {\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {2n\, + \,1} 
\end{array}} \right)\,} \right] + \left[ {\,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {2n\, + \,1} 
\end{array}} \right)\, + \,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {2n\, + \,1} 
\end{array}} \right)} \right]} \right\}$

$ = \,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  n 
\end{array}} \right)\, + \,\frac{1}{2}\,\left\{ {\left[ {\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {n\, + \,1} 
\end{array}} \right)\, + \,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {n\, + \,1} 
\end{array}} \right)\,} \right]} \right.\, + $

$\, + \,\left[ {\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {n\, + \,2} 
\end{array}} \right)\, + \,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {n\, – \,1} 
\end{array}} \right)} \right] + ,\,…,$

$ + \,\left[ {\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {2n} 
\end{array}} \right)\, + \,\,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  1 
\end{array}} \right)} \right]\, + \,\left[ {\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {2n\, + \,1} 
\end{array}} \right)\, + \,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  0 
\end{array}} \right)} \right]$

$\left[ {\because \,\left( {\begin{array}{*{20}{c}}
  n \\ 
  r 
\end{array}} \right)\, = \,\left( {\begin{array}{*{20}{c}}
  n \\ 
  {n\, – \,r} 
\end{array}} \right)} \right]$

$ = \,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  n 
\end{array}} \right)\, + \,\frac{1}{2}\,\left\{ {\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  0 
\end{array}} \right)\, + \,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  1 
\end{array}} \right)\, + \,,\,…,\, + \,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  {2n\, + \,1} 
\end{array}} \right)} \right\}$

=$\,\left( {\begin{array}{*{20}{c}}
  {2n\, + \,1} \\ 
  n 
\end{array}} \right)\, + \,{2^{2n}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.