$2 \le r \le n,\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right) + 2\,\left( \begin{array}{l}\,\,n\\r - 1\end{array} \right)$$ + \left( {\begin{array}{*{20}{c}}n\\{r - 2}\end{array}} \right)$=
$\left( {\begin{array}{*{20}{c}}{n + 1}\\{r - 1}\end{array}} \right)$
$2\,\left( {\begin{array}{*{20}{c}}{n + 1}\\{r + 1}\end{array}} \right)$
$2\,\left( {\begin{array}{*{20}{c}}{n + 2}\\r\end{array}} \right)$
$\left( {\begin{array}{*{20}{c}}{n + 2}\\r\end{array}} \right)$
જો $\sum\limits_{i = 0}^4 {^{4 + 1}} {C_i} + \sum\limits_{j = 6}^9 {^{3 + j}} {C_j} = {\,^x}{C_y}$ ($x$ એ અવિભાજ્ય સંખ્યા છે), હોય તો નીચેનામાંથી ક્યુ વિધાન ખોટું છે ?
$'MISSISSIPPI'$ શબ્દના અક્ષરો વડે એક અથવા વધારે અક્ષરોવાળા કુલ કેટલા ભિન્ન સંચયો બનાવી શકાય ?
એક પાર્ટીંમાં $15$ વ્યક્તિઓ છે અને દરેક વ્યક્તિ બીજા સાથે હાથ મિલાવે છે તો કુલ હાથ મિલાવવાની સંખ્યા કેટલી થાય ?
અંકો $0, 1, 3, 5, 7$ અને $9$ ના ઉપયોગથી પુનરાવર્તન વગર $6$ અંકોની $10$ વડે વિભાજ્ય હોય તેવી કેટલી સંખ્યાઓ બને ?
જો વિર્ધાથી $(2n + 1)$ બુકમાંથી વધુમાં વધુ $n$ બુક પસંદ કરી શકે છે.જો તે બુકની કુલ પસંદગી $63$ કરે છે,તો$n$ ની કિંમત મેળવો.