વિધાન $(p \wedge q) \rightarrow p$ શું છે ?
માત્ર પુનરાવૃતિ
વિરોધી વિધાન
ના (1) કે ના (2)
આપેલ પૈકી એકપણ નહિ.
જો $p, q, r$ એ વિધાનો હોય તો વિધાન $p\Rightarrow (q\vee r)$ =
નીચે આપેલ વિધાનનું સામાનાર્થી પ્રેરણ લખો:
"દરેક પૂર્ણાક સંખ્યા $n$ માટે જો $n^{3}-1$ યુગ્મ સંખ્યા હોય તો $n$ એ અયુગ્મ સંખ્યા છે"
બુલીયન નિરૂપણ $\sim\left( {p\; \vee q} \right) \vee \left( {\sim p \wedge q} \right)$ એ . . . ને સમકક્ષ છે. .
નીચેના વિધાનો ધ્યાનમાં લો.
$P :$ જો $7$ એ અયુગ્મ સંખ્યા હોય તો $7$ એ $2$ વડે વિભાજય છે
$Q :$ જો $7$ એ અવિભાજય સંખ્યા હોય તો $7$ એ અયુગ્મ સંખ્યા છે
જો $V_1$ એ વિધાન $P$ ના સામાનાર્થી પ્રેરણના સત્યાર્થતાનું મુલ્ય અને $V_2$ એ વિધાન $Q$ ના સામાનાર્થી પ્રેરણના સત્યાર્થતાનું મુલ્ય હોય તો $(V_1, V_2)$ =
જો નીચે આપેલા બે વિધાનો :
$\left( S _{1}\right):( q \vee p ) \rightarrow( p \leftrightarrow \sim q )$ એ નિત્ય સત્ય છે
$\left( S _{2}\right): \sim q \wedge(\sim p \leftrightarrow q )$ એ નિત્ય અસત્ય છે
હોય તો