ધારો કે, $A = {1, 3, 5, 7, 9}, B = {2, 4, 6, 8}.$ કાર્ટેંઝિયન ગુણાકાર $A × B$ ની ક્રમિક જોડ યાર્દચ્છિક રીતે પસંદ કરતાં $a + b = 9$ થાય. તેની સંભાવના …….. છે.
$\frac{3}{2}$
$\frac{3}{4}$
$1$
$\frac{1}{5}$
બે પાસાઓને ફેંકવાથી એક યુગ્મ મળવાની સંભાવના કેટલી?
જો કોઇ ત્રણ શક્ય ઘટનાઓ $A$, $B$ અને $C$ માટે $P\left( {A \cap B \cap C} \right) = 0,P\left( {A \cup B \cup C} \right) = \frac{3}{4},$ $P\left( {A \cap B} \right) = \frac{1}{3}$ and $P\left( C \right) = \frac{1}{6}$ સંભાવના હોય તો ઘટના $C$ ન થાય અને ઘટના $A$ અથવા $B$ માંથી કોઇ એક જ ઘટના થવાની સંભાવના મેળવો.
એક ઘટનામાં એક સિક્કાને ઉછાળવામાં આવે છે. જો તેના પર છાપ આવે તો તે સિક્કાને ફરીથી ઉછાળવામાં આવે છે. જો પ્રથમ વખત ઉછાળવાથી તેના પર કાંટો મળે તો એક પાસો ફેંકવામાં આવે છે. આ પ્રયોગનો નિદર્શાવકાશ શોધો.
એક સિક્કો ઉછાળો. જો તે છાપ બતાવે તો આપણે થેલામાંથી એક દડો કાઢીશું. તે થેલામાં $3$ વાદળી અને $4$ સફેદ દડા છે. જો તે કાંટો બતાવે તો આપણે પાસો ઉછાળીશું. આ પ્રયોગનો નિદર્શાવકાશ વર્ણવો.
ત્રણ પાસાને એકસાથે ઉછાળતાં ત્રણેય પર સમાન અંક આવે તેની સંભાવના મેળવો.