બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
નીચે આપેલ ઘટનાઓ વર્ણવો : $A$ અથવા $B$
When two dice are thrown, the sample space is given by
$s =\{(x, y): x, y=1,2,3,4,5,6\}$
$=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6) \\ (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\ (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\ (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\ (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right]$
Accordingly,
$A =\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$
$B =\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3) \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$
$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$
$A$ or $B =A \cup B=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6) \\ (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\ (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\ (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\ (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}=S$
જો ત્રણ વિધ્યાર્થીઓ $A, B, C$ એ કોઇ સવાલનુ સ્વત્રંત રીતે સમાધાન કરવાની સંભાવના અનુક્રમે $\frac{1}{3},\frac{1}{4}$ અને $\frac{1}{5}$ હોય તો સવાલનુ સમાધાન થાય તેની સંભાવના મેળવો.
એક પાસો ફેંકવામાં આવે છે. નીચે આપેલ ઘટનાઓનું વર્ણન કરો : $A :$ સંખ્યા $7$ કરતાં નાની છે. $A \cup B$ શોધો
એક પાસો ફેંકવામાં આવે છે. ધારો કે ઘટના $E$ “પાસા પર સંખ્યા $4$ દર્શાવે છે' અને ઘટના $F$ ‘પાસા પર યુગ્મ સંખ્યા દર્શાવે છે? શું $E$ અને $F$ પરસ્પર નિવારક છે ?
ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.
$2$ છાપ મળે.
બે સમતોલ પાસાને ઉછાળવામાં આવે છે . જો ઘટના $A$ દર્શાવે છે કે પ્રથમ પાસા પર યુગ્મ સંખ્યા આવે અને ઘટના $B$ એ બીજા પાસા પર અયુગ્મ સંખ્યા આવે છે .તો બે ઘટના $A$ અને $B$ એ . . . .