જો બિંદુ $P$ માંથી વર્તૂળો $x^{2} + y^{2} = a^2 \,\,, x^2 + y^{2} = b^2$ અને $x^{2} + y^{2} = c^{2}$ પર દોરેલા સ્પર્શકોની લંબાઈનો વર્ગ સમાંતર શ્રેણીમાં હોય, તો.....
$a, b, c$ સમગુણોત્તર શ્રેણીમાં હોય
$a, b, c$ સમાંતર શ્રેણીમાં હોય
$a^{2}, b^{2}, c^{2}$ સમાંતર શ્રેણીમાં હોય
$a^{2}, b^{2}, c^{2} $ સમગુણોત્તર શ્રેણીમાં હોય.
જો ત્રિજ્યા $R$ ધરાવતું વર્તુળ ઉંગમબિંદુ $O$ માંથી પસાર થતું હોય અને યામાક્ષોને બિંદુ $A$ અને $B$ માં છેદે તો બિંદુ $O$ થી રેખા $AB$ પરના લંબનો પાથ મેળવો.
વર્તુળ $C_{1}$ એ ઉગમબિંદુ $O$ માંથી પસાર થાય છે અને ધન $x-$ અક્ષ પર $4$ લંબાઇનો વ્યાસ છે. રેખા $y =2 x$ એ વર્તુળ $C _{1}$ પર જીવા $OA$ બનાવે છે. અહી $C _{2}$ માં $OA$ વ્યાસ છે. જો $C _{2}$ નો બિંદુ $A$ આગળનો સ્પર્શક $x$-અક્ષને બિંદુ $P$ અને $y$-અક્ષને $Q$ માં છેદે છે તો $QA : AP$ ની કિમંત મેળવો.
$x$-અક્ષ સાથે $60°$ ના ખૂણે ઢળેલા વર્તૂળ $x^2 + y^2 = 25$ ના સ્પર્શકનું સમીકરણ :
બિંદુ $(2, 3)$ માંથી વર્તૂળ $2\ (x^2 + y^2) - 7x + 9y - 11 = 0$ પર દોરેલા સ્પર્શકની લંબાઈ :
વર્તુળ $x^2 + y^2 = 4$ પરના બિંદુ $(\sqrt 3,1)$ પર આંતરેલ અભિલંબ અને સ્પર્શક તથા $x -$ અક્ષ થી બનતા ત્રિકોણનું ક્ષેત્રફળ ચો. એકમમાં મેળવો