ઉપવલયનો નાભિલંબ $10$ છે અને ગૌણઅક્ષની લંબાઈ નાભિઓ વચ્ચેના અંતર બરાબર હોય તો ઉપવલયનું સમીકરણ મેળવો.
$x^{2} + 2y^{2} = 100$
${x^2}\,\, + \;\,\sqrt 2 \,\,{y^2}\,\, = \,\,10$
$x^{2} - 2y^{2} = 100$
એકપણ નહિ
ધારો કે $A(\alpha, 0)$ અને $B(0, \beta)$ એ, રેખા $5 x+7 y=50$ પરના બિંદુઓ છે. ધારો કે બિંદુ $P$, રેખાખંડ $A B$ નું $7: 3$ ગુણોત્તરમાં અંતઃવિભાજન કરે છે. ધારો કે ઉપવલય $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ ની એક નિયામિકા $3 x-25=0$ છે અને અનુરૂપ નાભિ $S$ છે. જો $S$ માંથી $x$-અક્ષ પરનો લંબ $P$ માંથી પસાર થતો હોય, તો $E$ ના નાભિલંબની લંબાઇ .......................... છે.
જો બે ભિનન શાંકવો $x^2+y^2=4 b$ અને $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ ના છેદ બિંદુઓ, વક્ર $y^2=3 x^2$ પર આવેલા હોય, તો આ છેદ બિંદુઓ દ્વારા રચાયેલ લંબચોરસના ક્ષેત્રફળના $3 \sqrt{3}$ ઘણા........................... થાય.
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{36}+\frac{y^2} {16}=1$
બિંદુઓ $(4, 3)$ અને $(- 1,4)$ માંથી પસાર થતા હોય તથા જેનો પ્રધાન અક્ષ $x-$ અક્ષ હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
ઉપવલય $4{x^2} + 9{y^2} = 1$ પરના . . . . . બિંદુથી દોરવામાં આવેલ સ્પર્શકએ રેખા $8x = 9y$ ને સમાંતર થાય.