ઉપવલયનો નાભિલંબ $10$ છે અને ગૌણઅક્ષની લંબાઈ નાભિઓ વચ્ચેના અંતર બરાબર હોય તો ઉપવલયનું સમીકરણ મેળવો.
$x^{2} + 2y^{2} = 100$
${x^2}\,\, + \;\,\sqrt 2 \,\,{y^2}\,\, = \,\,10$
$x^{2} - 2y^{2} = 100$
એકપણ નહિ
જો ઉપવલયની ગૈાણ અક્ષના અત્યંબિંદુએ નાભિ સાથે આંતરેલો ખૂણો $\frac{\pi }{2}$ હોય તો ઉપવલયની ઉકેન્દ્રતા મેળવો.
ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{9}\,\, = \,\,1$ની નાભિઓમાંથી પસાર થતાં અને $(0, 3)$ કેન્દ્ર ધરાવતા વર્તૂળની ત્રિજ્યા =
ઉપવલય $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ ના નાભિલંબોના અંત્યબિંદુઓ આગળના સ્પર્શકો દ્વારા બનતા ચતુષ્કોણનું ક્ષેત્રફળ (ચોરસ એકમમાં) મેળવો.
જો ઉપવલય $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{4 a^{2}}=1$ ના સ્પર્શક અને યામક્ષો દ્વારા બનતા ત્રિકોણનું ન્યૂનતમ ક્ષેત્રફળ $kab$ હોય તો $\mathrm{k}$ ની કિમંત મેળવો.
જો અતિવલય $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ પરના બે બિંદુઓ $P(a\sec \theta ,\;b\tan \theta )$ અને $Q(a\sec \phi ,\;b\tan \phi )$ ,કે જયાં $\theta + \phi = \frac{\pi }{2}$ છે.જો $(h, k)$ એ બિંદુઓ $P$ અને $Q$ આગળના અભિલંબનું છેદબિંદુ હોય તો $k$ ની કિંમત મેળવો.