વર્તૂળ $x^2 + y^2 -2x + 4y - 4 = 0$, માટે રેખા $2x - y - 1 = 0$ શું છે ?
જીવા
વ્યાસ
સ્પર્શક રેખા
એકપણ નહિ
રેખા $x + 2y = 1$ એ યામાક્ષોને બિંદુ $A$ અને $B$ આગળ છેદે છે જો વર્તુળ બિંદુ $A, B$ અને ઉંગમબિંદુમાંથી પસાર થતું હોય તો બિંદુ $A$ અને $B$ થી વર્તુળના ઉંગમબિંદુ એ અંતરેલા સ્પર્શકના લંબઅંતરનો સરવાળો મેળવો.
રેખા $2 x - y +1=0$ એ બિંદુ $(2,5)$ આગળ વર્તુળનો સ્પર્શક બને છે કે જેનું કેન્દ્ર રેખા $x-2 y=4$ પર આવેલ હોય તો વર્તુળની ત્રિજ્યા મેળવો.
કેન્દ્ર $(2,3)$ અને ત્રિજ્યા $4$ વાળું વર્તુળ રેખા $x+y=3$ ને બિંદુઓ $P$ અને $Q$ માં છેદે છે. જો $P$ અને $Q$ પાસેના સ્પર્શકો બિંદુ $S(\alpha, \beta)$ માં છેદે, તો $4 \alpha-7 \beta=....................$
બિંદુ $ (0, 1)$ માંથી વર્તૂળ $x^2 + y^2 - 2x + 4y = 0 $ પર દોરેલા સ્પર્શકોની જોડનું સમીકરણ . . . . . .
જો રેખાઓ $3x - 4y + 4 = 0$ અને $6x - 8y - 7 = 0$ વર્તૂળના સ્પર્શકો હોય તો તેની ત્રિજયા મેળવો.