રેખા $4x + 3y + 5 = 0$ ને સમાંતર, વર્તૂળ $x^2 + y^2 - 6x + 4y = 12$ ની સ્પર્શક રેખાઓ :
$4 x+3 y-31=0,4 x+3 y+19=0$
$4 x+3 y+5=0,4 x+3 y-25=0$
$4x + 3y - 17 =0, 4x + 3y + 13 = 0$
એકપણ નહિ
ધારો કે વર્તુળ $C$ એ રેખોઓ $L_{1}: 4 x-3 y+K_{1}$ $=0$ અને $L _{2}: 4 x -3 y + K _{2}=0, K _{1}, K _{2} \in R$ ને સ્પર્શ છે. જો આ વર્તુળના કેન્દ્રમાંથી પસાર થતી રેખા એ $L _{1}$ ને $(-1,2)$આગળ તથા $L _{2}$ ને $(3,-6)$ આગળ છેદે તો વર્તુળ $C$ નું સમીકરણ ........... છે.
રેખાઓ $12x - 5y - 17 = 0$ અને $24x - 10y + 44 = 0$ સમાન વર્તૂળના સ્પર્શકો તો વર્તૂળની ત્રિજ્યા :
જો રેખા $(x + g) cos\ \theta + (y +f) sin\theta = k$ વર્તૂળ $x^2 + y^2 + 2gx + 2fy + c =0$ , ને સ્પર્શેં, તો
અહી વર્તુળ $x ^{2}+ y ^{2}-4 x +3=0$ પરના બે બિંદુઓ $A$ અને $B$ માંથી દોરવામાં આવેલ સ્પર્શકએ ઉગમબિંદુ $O (0,0)$ આગળ મળે છે. તો ત્રિકોણ $OAB$ નું ક્ષેત્રફળ મેળવો.
જો રેખા $y = mx + 1$ એ વર્તૂળ $x^2 + y^2+ 3x = 0$ ને અક્ષથી સમાન અંતરે અને વિરૂદ્ધ બાજુએ બે બિંદુઓ આગળ મળે, તો?