$(\alpha , \beta)$ પરથી વર્તૂળ $x^{2} + y^{2} = a^{2}$ પર દોરેલા બે સ્પર્શકો વચ્ચેનો ખૂણો :
${\tan ^{ - 1\,}}\left( {\frac{a}{{\sqrt {{S_1}} }}} \right)$
$2\,{\tan ^{ - 1}}\,\,\left( {\frac{a}{{\sqrt {{S_1}} }}} \right)$
$2\,{\tan ^{ - 1}}\,\,\left( {\frac{{\sqrt {{S_1}} }}{a}} \right)$
એકપણ નહિ
જો $y = c$ એ વર્તૂળ $x^2 + y^2 -2x + 2y - 2 = 0$ નો $(1, 1)$ આગળનો સ્પર્શક હોય, તો $c$ નું મુલ્ય :
બિંદુ $(1,\sqrt 3 )$ માંથી વર્તૂળ ${x^2} + {y^2} = 4$ પર દોરવામાં આવેલ સ્પર્શક અને અભિલંબ અને ધન $x$- અક્ષ દ્વારા બનતા ત્રિકોણનું ક્ષેત્રફળ મેળવો.
ઉગમબિંદુમાંથી વર્તૂળ $ x^2 + 2px+y^2 - 2qy + q^2 = 0 $ પર દોરેલા સ્પર્શક લંબ ક્યારે હોય ?
બિંદુ $ (1, 5)$ માંથી વર્તૂળ $2x^2 + 2y^2 = 3$ પર દોરેલા સ્પર્શકની લંબાઈ ......
ધારો કે વર્તુળ $x^{2}+y^{2}+a x+2 a y+c=0$ $,(a < 0)$ એ $x-$ અક્ષ તથા $y-$અક્ષ સાથે અનુક્રમે $2 \sqrt{2}$ તથા $2 \sqrt{5}$ જેટલો અંતઃખંડ બનાવે છે. તો ઊગમબિંદુ થી રેખા $x +2 y =0$ ને લંબ હોય એવા આ વર્તુળનાં સ્પર્શકનું લઘુત્તમ અંતર ...... છે.