- Home
- Standard 11
- Physics
11.Thermodynamics
medium
વાયુની આંતરિકઊર્જા $U$ અને કદ પ્રસરણાંક વચ્ચેનો સંબંધ
A
$U = \frac{{PV}}{{\gamma - 1}}$
B
$U = \frac{{P{V^\gamma }}}{{\gamma - 1}}$
C
$U = \frac{{PV}}{\gamma }$
D
$U = \frac{\gamma }{{PV}}$
Solution
$\Delta U = \mu \,{c_v}\Delta T$ ==> ${U_2} – {U_1} = \mu \,{c_v}({T_2} – {T_1})$
${T_1} = 0$ so ${U_1} = 0$
${T_2} = T$ and ${U_2} = U$
$U = \mu \,\,{c_v}T = \mu \,T \times {c_v}$$ = \frac{{PV}}{R} \times \frac{R}{{\gamma – 1}} = \frac{{PV}}{{\gamma – 1}}$
[$PV = \mu \,RT$ $\therefore$ $\mu T = \frac{{PV}}{R}$ and ${c_v} = \frac{R}{{\gamma – 1}}$]
Standard 11
Physics