- Home
- Standard 12
- Physics
$X$-અક્ષ પર વિદ્યુતભાર $Q$ અનુક્રમે $x = 1, 2, 4, 8…meter$ પર મૂકેલા છે,તો $x = 0$ પર વિદ્યુતક્ષેત્ર અને વિદ્યુતસ્થિતિમાન કેટલું થાય?
$12 \times {10^9}Q\ N/C, 1.8 \times 10^4\ V$
શુન્ય $, 1.2 \times 10^4\,V$
$6 \times {10^9}\,Q\ N/C, 9 \times 10^3\ V$
$4 \times {10^9}\,Q\ N/C , 6 \times 10^3\ V$
Solution

$E = kQ\left[ {\frac{1}{{{1^2}}} + \frac{1}{{{2^2}}} + \frac{1}{{{4^2}}} + \frac{1}{{{8^2}}} + …\infty } \right]$
$E = kQ\left[ {1 + \frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + …\infty } \right]$$1 + \frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + …\infty $
${S_\infty } = \frac{a}{{1 – r}}$ $a = 1$ , $r = \frac{1}{4}$ $1 + \frac{1}{4} + \frac{1}{{16}} + \frac{1}{{64}} + …..\,\infty = \frac{1}{{1 – 1/4}} = \frac{4}{3}$
$E = 9 \times {10^9} \times Q \times \frac{4}{3} = 12 \times {10^9}\,Q\,N/C$
$V = \frac{1}{{4\pi {\varepsilon _0}}}\left[ {\frac{{1 \times {{10}^{ – 6}}}}{1} + \frac{{1 \times {{10}^{ – 6}}}}{2} + \frac{{1 \times {{10}^{ – 6}}}}{4} + \frac{{1 \times {{10}^{ – 6}}}}{8} + …….\infty } \right]$
$ = \,9 \times {10^9} \times {10^{ – 6}}\left[ {1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + …………\infty } \right] = 9 \times {10^3}\left[ {\frac{1}{{1 – \frac{1}{2}}}} \right]$
$ = 1.8 \times {10^4}\,volt$