Gujarati
3-1.Vectors
medium

$\mathop A\limits^ \to = 2\hat i + 4\hat j + 4\hat k$ तथा $\overrightarrow B = 4\hat i + 2\hat j - 4\hat k$ दो सदिश हैं। उनके मध्य कोण ........ $^o$ होगा

A

$0$

B

$45$

C

$90$

D

$60$

Solution

(c) $\cos \theta = \frac{{\mathop A\limits^ \to \,.\,\mathop B\limits^ \to }}{{|\mathop A\limits^ \to \,|\,.\,|\,\mathop B\limits^ \to |}} = \frac{{{a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}}}{{|\mathop A\limits^ \to \,|\,.\,|\mathop B\limits^ \to |\,}}$

$ = \frac{{2 \times 4 + 4 \times 2 – 4 \times 4}}{{|\mathop A\limits^ \to |\,.\,|\mathop B\limits^ \to |}} = 0$

$\therefore \theta = {\cos ^{ – 1}}(0^\circ )$ $ \Rightarrow \,\,\,\theta = 90^\circ $

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.