यदि ${\log _7}2 = m,$ हो, तब ${\log _{49}}28$ बराबर होगा
$2\,(1 + 2m)$
$\frac{{1 + 2m}}{2}$
$\frac{2}{{1 + 2m}}$
$1 + m$
यदि $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2$ हो, तब $A $ का मान होगा
यदि ${x^{\frac{3}{4}{{({{\log }_3}x)}^2} + {{\log }_3}x - \frac{5}{4}}} = \sqrt 3 $ हो, तब $x$ है
योगफल $\sum_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}$ बराबर है:
यदि $1$ से भिन्न तीन विभिन्न धनात्मक संख्यायें $a, b, c $ इस प्रकार हो कि $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$$ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ तब $abc =$
यदि $n = 1983\,!$ हो, तब व्यंजक $\frac{1}{{{{\log }_2}n}} + \frac{1}{{{{\log }_3}n}} + \frac{1}{{{{\log }_4}n}} + ....... + \frac{1}{{{{\log }_{1983}}n}}$का मान होगा