मान लीजिए कि $a, b, x$ धनात्मक वास्तविक संख्याएँ हैं और $a \neq 1, x \neq 1$ एवं $a b \neq 1$ यदि $\log _a b=10$ तथा $\frac{\log _a x \log _x\left(\frac{b}{a}\right)}{\log _x b \log _{a b} x}=\frac{p}{q},$ यहाँ $p$ और $q$ धनात्मक पूर्णांक हैं एवं असहभाज्य (co-prime) हैं, तब $p+q$ का क्या मान होगा ?
$9$
$99$
$109$
$199$
${\log _4}2 - {\log _8}2 + {\log _{16}}2 - ....\infty $ तक, का मान है
यदि $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2$ हो, तब $A $ का मान होगा
$\sqrt {(\log _{0.5}^24)} $का मान है
यदि ${\log _e}\left( {\frac{{a + b}}{2}} \right) = \frac{1}{2}({\log _e}a + {\log _e}b)$ हो, तो $a $ और $b$ के मध्य सम्बंध होगा
संख्या $15^2 \times 5^{18}$ को यदि आधार $(base)$ $10$ में लिखा जाए, तब इसके अंकों का योग $S$ है। तब