मान लीजिए कि $a, b, x$ धनात्मक वास्तविक संख्याएँ हैं और $a \neq 1, x \neq 1$ एवं $a b \neq 1$ यदि $\log _a b=10$ तथा $\frac{\log _a x \log _x\left(\frac{b}{a}\right)}{\log _x b \log _{a b} x}=\frac{p}{q},$ यहाँ $p$ और $q$ धनात्मक पूर्णांक हैं एवं असहभाज्य (co-prime) हैं, तब $p+q$ का क्या मान होगा ?

  • [KVPY 2021]
  • A

    $9$

  • B

    $99$

  • C

    $109$

  • D

    $199$

Similar Questions

यदि ${x^{\frac{3}{4}{{({{\log }_3}x)}^2} + {{\log }_3}x - \frac{5}{4}}} = \sqrt 3 $ हो, तब $x$ है

यदि $\frac{1}{2} \le {\log _{0.1}}x \le 2$हो तब .......

यदि $\frac{1}{{{{\log }_3}\pi }} + \frac{1}{{{{\log }_4}\pi }} > x$ हो, तब $x =$

${81^{(1/{{\log }_5}3)}} + {27^{{{\log }_{_9}}36}} + {3^{4/{{\log }_{_7}}9}}$ का मान है

मान लें कि $n$ सबसे छोटा धन पूर्णांक इस प्रकार है कि $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \geq 4$ निम्नांकित में कौन सा कथन सही है ?

  • [KVPY 2017]