$50 \,gm$ द्रव्यमान एवं $20$ सेमी व्यास का एक गोला $5\, cm/sec$ के वेग से बगैर फिसले लुढ़क रहा है। इसकी कुल गतिज ऊर्जा होगी
$625$ अर्ग
$250$ अर्ग
$875$ अर्ग
$875$ जूल
एक गेंद बिना फिसले लुढ़कती है। इसके द्रव्यमान-केंद्र से गुजरने वाले अक्ष के परित: गाइरेशन त्रिज्या $K$ है। यदि गेंद की त्रिज्या $R$ हो तो इसकी घूर्णन ऊर्जा के साथ जुड़ी कुल ऊर्जा का अंश होगा
किसी पतली एकसमान छड़ की लम्बाई $2 \mathrm{~cm}$, अनुप्रस्थ काट का क्षेत्रफल ' $\mathrm{A}$ ' एवं घनत्व ' $\mathrm{d}$ ' है। इसे $\omega$ कोणीय वेग से एक अक्ष के परितः घुमाया जाता है, जो कि इसके केन्द्र से गुजर रही है एवं इसकी लम्बाई के लम्बवत है। इसकी घूर्णन ऊर्जा $\mathrm{E}$ के पदो में, $\omega$ का मान $\sqrt{\frac{\alpha \mathrm{E}}{\mathrm{Ad}}}$ है तो $\alpha$ का मान ___________ होगा।
लंबाई $L$ एंव द्रव्यमान $M$ की एकसमान पतली छड़ को अधिक घर्षण वाले तल पर लम्बवत रखते है। इसको स्थिर अवस्था में छोड़ने पर यह तल के संपर्क बिन्दु के परितः घूमते हुए बिना फिसले गिरती है। जब यह छड़ ऊर्ध्वाधर से $60^{\circ}$ कोण बनाती है। तब निम्नलिखित कथनों में से कौनसा/कौनसे सही है (हैं) ?
[ $g$ गुरूत्वीय त्वरण है]
$(1)$ छड़ के द्रव्यमान केन्द्र (center of mass) का त्रिज्य त्वरण (radial acceleration) $\frac{3 g }{4}$ होगा।
$(2)$ छड़ का कोणीय त्वरण $\frac{2 g }{ L }$ होगा।
$(3)$ छड़ की कोणीय गति $\sqrt{\frac{3 g }{2 L }}$ होगी।
$(4)$ तल के लम्बवत छड़ पर प्रतिक्रिया (normal reaction) बल $\frac{ Mg }{16}$ होगा।
एक ठोस गोला $h$ ऊंचाई के नत समतल पर बिना खिबसे घूर्णन गति करता है। उसका कोणीय वेग होगा
एक $12\,kg$ का लुढ़कता हुआ पहिया नततल पर स्थित बिन्दु $P$ पर है तथा चित्रानुसार एक नियत लम्बाई की रस्सी तथा घिरनी द्वारा $3\,kg$ द्रव्यमान से बंधा हुआ है। $PR$ सतह घर्पण रहित हैं जब पहिया लुढ़कता हुआ नततल $PQ$ के आधार $Q$ पर पहुँचता है तो उसके द्रव्यमान केन्द्र का वेग $\frac{1}{2} \sqrt{ xgh } m / s$ है तो $x$ का मान होगा।