- Home
- Standard 11
- Physics
$A$ small ball $B$ of mass $m$ is suspended with light inelastic string of length $L$ from $a$ block $A$ of same mass $m$ which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle $\theta$ from equilibrium position & then released. Tension in string when it is vertical, is

$mg$
$mg(2-cos\theta )$
$mg (3 - 2cos\theta )$
none of these
Solution
Loss in $P E=\operatorname{gain}$ in $K E$
$m g(L-L \cos \theta)=\frac{1}{2} m v_{1}^{2}+\frac{1}{2} m v_{2}^{2}$
Applying momentum conservation principle in horizontal direction. $P_{i x}=P_{f x}$
$\overrightarrow{0}=m v_{1}-m v_{2}$
$\therefore v_{1}=v_{2}=v$
$\therefore M g(L-L \cos \theta)=m v^{2}$
$\therefore v=\sqrt{g l(1-\cos \theta)}$
$=T-m g=\frac{m\left(2 v^{2}\right)}{l}$
$\therefore T=m g+\frac{4 m g l(1-\cos \theta)}{l}$
$\therefore T=m g+4 m g(1-\cos \theta)$
Similar Questions
A stone of mass $m$ tied to the end of a string revolves in a vertical circle of radius $R$. The net forces at the lowest and highest points of the circle directed vertically downwards are:
Choose the correct alternative
Lowest Point | Highest Point |
$(a)$ ${mg – {T_1}}$ | ${mg + {T_2}}$ |
$(b)$ ${{m_g} + {T_1}}$ | ${{m_g} – {T_2}}$ |
$(c)$ ${mg + {T_1} – \frac{{mv_1^2}}{R}}$ | ${mg – {T_2} + \frac{{mv_1^2}}{R}}$ |
$(d)$ ${mg – {T_1} – \frac{{mv_1^2}}{P}}$ | ${mg + {T_2} + \frac{{mv_1^2}}{p}}$ |