$A$ ball is dropped from height $5m$. The time after which ball stops rebounding if coefficient of restitution between ball and ground $e = 1/2$, is .................. $\mathrm{sec}$

  • A

    $1$

  • B

    $2$

  • C

    $3 $

  • D

    infinite

Similar Questions

A $15\, g$ ball is shot from a spring gun whose spring has a force constant of $600\, N\, m$. The spring is compressed by $3\, cm$. The greatest possible velocity of the ball for this compression is ............. $\mathrm{m}/ \mathrm{s}$   $(g = 10\, m/s^2$)

A particle is moved from $(0, 0)$ to $(a, a)$ under a force $\vec F = (3\hat i + 4\hat j)$ from two paths. Path $1$ is $OP$ and path $2$ is $OQP$. Let $W_1$ and $W_2$ be the work done by this force in these two paths respectively. Then

A particle is made to move from the origin in three spells of equal distances, first along the $x-$ axis, second parallel to $y-$ axis and third parallel to $z-$ axis. One of the forces acting on it is has constant magnitude of $50\,N$ and always acts along the direction of motion. Work done by this force in the three spells of motion are equal and total work done in all the three spells is $300\,J$. The final coordinates of the particle will be

A vertical spring with force constant $k$ is fixed on a table. A ball of mass $m$ at a height $h$ above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance $d$. The net work done in the process is

A particle of mass $m$ strikes the ground inelastically, with coefficient of restitution $e$