Figure shows the vertical section of frictionless surface. A block of mass $2\, kg$ is released from the position $A$ ; its $KE$ as it reaches the position $C$ is ............ $\mathrm{J}$
$180$
$140$
$40$
$280$
A particle is made to move from the origin in three spells of equal distances, first along the $x-$ axis, second parallel to $y-$ axis and third parallel to $z-$ axis. One of the forces acting on it is has constant magnitude of $50\,N$ and always acts along the direction of motion. Work done by this force in the three spells of motion are equal and total work done in all the three spells is $300\,J$. The final coordinates of the particle will be
Four particles $A, B, C$ and $D$ of equal mass are placed at four corners of a square. They move with equal uniform speed $v$ towards the intersection of the diagonals. After collision, $A$ comes to rest, $B$ traces its path back with same speed and $C$ and $D$ move with equal speeds. What is the velocity of $C$ after collision
A body of mass $m$ is moving in a circle of radius $r$ with a constant speed $v$. The force on the body is $\frac{{m{v^2}}}{r}$ and is directed towards the centre. What is the work done by this force in moving the body over half the circumference of the circle
If the potential energy of a gas molecule is $U = \frac{M}{{{r^6}}} - \frac{N}{{{r^{12}}}},M$ and $N$ being positive constants, then the potential energy at equilibrium must be
If $F = 2x^2 -3x -2$, then choose correct option