- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
$A = \left[ {\begin{array}{*{20}{c}}1&0\\1&1\end{array}} \right]$ અને $I = \left[ {\begin{array}{*{20}{c}}
1&0\\0&1\end{array}} \right]$ , તો આપેલ પૈકી ક્યૂ વિધાન $n \geq 2, n \in N$ માટે સત્ય છે .
A
${A^n} = {2^{n - 1}}A + \left( {n - 1} \right)I$
B
${A^n} = nA + \left( {n - 1} \right)I$
C
${A^n} = {2^{n - 1}}A - \left( {n - 1} \right)I$
D
${A^n} = nA - \left( {n - 1} \right)I$
Solution
$A^2 = \left[ {\begin{array}{*{20}{c}} 1&0 \\ 1&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&0 \\ 1&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0 \\ 2&1 \end{array}} \right]$ it satisfies only option $(D)$
Standard 12
Mathematics