3 and 4 .Determinants and Matrices
easy

જો $2X + \left[ {\begin{array}{*{20}{c}}1&2\\3&4\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}3&8\\7&2\end{array}} \right]$ તો શ્રેણિક $X$ મેળવો.

A

$\left[ {\begin{array}{*{20}{c}}1&3\\2&{ - 1}\end{array}} \right]$

B

$\left[ {\begin{array}{*{20}{c}}1&{ - 3}\\2&{ - 1}\end{array}} \right]$

C

$\left[ {\begin{array}{*{20}{c}}2&6\\4&{ - 2}\end{array}} \right]$

D

$\left[ {\begin{array}{*{20}{c}}2&{ - 6}\\4&{ - 2}\end{array}} \right]$

Solution

(a) $2X\, = \left[ {\begin{array}{*{20}{c}}3&8\\7&2\end{array}} \right] – \left[ {\begin{array}{*{20}{c}}1&2\\3&4\end{array}} \right]$
$2X = \left[ {\begin{array}{*{20}{c}}2&6\\4&{ – 2}\end{array}} \right] \Rightarrow X = \left[ {\begin{array}{*{20}{c}}1&3\\2&{ – 1}\end{array}} \right]$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.