- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
$P$ is a variable point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with $AA'$ as the major axis. Then the maximum value of the area of $\Delta APA'$ is
A
$\left| {ab} \right|$
B
$\left| {\frac{{ab}}{2}} \right|$
C
$\left| {2ab} \right|$
D
$\left| {\frac{{ab}}{4}} \right|$
Solution
Maximum area corresponds to when $P$ is at either end of the minor exis and hence area for such position of $P = \frac{1}{2}2ab = ab$
Standard 11
Mathematics