Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

$P$ is a variable point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with $AA'$ as the major axis. Then the maximum value of the area of $\Delta APA'$ is

A

$\left| {ab} \right|$

B

$\left| {\frac{{ab}}{2}} \right|$

C

$\left| {2ab} \right|$

D

$\left| {\frac{{ab}}{4}} \right|$

Solution

Maximum area corresponds to when $P$ is at either end of the minor exis and hence area for such position of $P = \frac{1}{2}2ab = ab$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.